Study Shows Blocking Yeast-Bacteria Interaction May Help Target Severe Childhood Tooth Decay

Posted on July 12, 2017

PHILADELPHIA, July 11, 2017 /PRNewswire-USNewswire/ -- Though most tooth decay can be blamed on bacteria, such as Streptococcus mutans, the fungus Candida albicans may be a joint culprit in an alarmingly common form of severe tooth decay affecting toddlers known as early childhood caries.

In earlier research, a team from Penn Dental Medicine had found that C. albicans, a type of yeast, took advantage of an enzyme produced by S. mutans to form a particularly intractable biofilm. In a new study, the researchers have pinpointed the surface molecules on the fungus that interact with the bacterially-derived protein. Blocking that interaction impaired the ability of yeast to form a biofilm together with S. mutans on the tooth surface, pointing to a novel therapeutic strategy.

"Instead of just targeting bacteria to treat early childhood caries, we may also want to target the fungi," said Hyun (Michel) Koo, senior author on the study and a professor in the Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health. "Our data provide hints that you might be able to target the enzyme or cell wall of the fungi to disrupt the plaque biofilm formation."

Koo collaborated on the work with Penn Dental Medicine's Geelsu Hwang, the first author and a research assistant professor, as well as Yuan Liu, Dongyeop Kim and Yong Li. Damian J. Krysan of the University of Rochester was also a coauthor. The research appears in the journal PLoS Pathogens.

The findings point to a new direction for treatment of early childhood caries. The current standard of care, beyond the use of fluoride as a preventive approach, is to target only the bacteria with antimicrobials, or to use surgical interventions if the tooth decay has become too severe.

"This disease affects 23 percent of children in the United States and even more worldwide," said Koo. "In addition to fluoride, we desperately need an agent that can target the disease-causing biofilms and in this case not only the bacterial component but possibly also the Candida."

Koo and colleagues are now working on novel therapeutic approaches for targeted interventions, which can be potentially developed for clinical use.

The research is supported by the National Institute of Dental and Craniofacial Research grants DE025220 and DE025728.

 

© 2017 AEGIS Communications | Privacy Policy